Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Gregory S. Coumbarides, ${ }^{\text {a }}$ Jason Eames, ${ }^{\text {b }}$ * Majid Motevalli, ${ }^{\text {a }}$ Nela Malatesti ${ }^{\text {c }}$ and Yonas Yohannes ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Queen Mary, University of London, Mile End Road, London E1 4NS, England, ${ }^{\mathbf{b}}$ Department of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England, and ${ }^{\text {c }}$ Department of Chemistry, J. J. Strossmayer University of Osijek, Trg Sv. Trojstva 3, Osijek 31000, Croatia

Correspondence e-mail: j.eames@hull.ac.uk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.040$
$w R$ factor $=0.089$
Data-to-parameter ratio $=7.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(+)-(4R,5S)-4-Methyl-3-[2(R)-phenoxypropionyl]-5-phenyloxazolidin-2-one

In the title compound, $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4}$, formed from enantiomerically pure (+)-(4R,5S)-4-methyl-5-phenyl-2-oxazolidinone and racemic 2-phenoxypropanoyl chloride, the two carbonyl groups are oriented anti to each other, and the two methyl groups are oriented anti to each other.

Comment

The title compound, (I), is the fifth in a series of structurally related compounds, introduced in our earlier report (Coumbarides et al., 2006). With $R^{1}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$, the reaction shown in that report yielded the anti-syn and syn-syn diastereomers in 44 and 45% yields, respectively. The title compound, (I), is the syn-syn diastereomer.

(I)

The conformation of (I) (Fig. 1) is closely comparable with that of the phenylpropionyl derivative (Coumbarides et al., 2006). The five-membered ring displays a twist conformation in which atoms C1 and C2 lie, respectively, 0.286 (5) \AA above and 0.291 (5) A below the plane defined by atoms O1, O2, N1 and C3. The two methyl groups (C4 and C19) lie anti to each other, on either side of the five-membered ring. The carbonyl groups $(\mathrm{C} 3=\mathrm{O} 2$ and $\mathrm{C} 11=\mathrm{O} 3)$ are also oriented anti to each other [torsion angle $\left.\mathrm{O} 3-\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 3=-171.2(3)^{\circ}\right]$, avoiding electrostatic repulsion between the two O atoms. The shortest intermolecular contacts (Fig. 2) are $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions $\left[\mathrm{H} 16 \cdots \mathrm{O} 2^{\mathrm{i}}=2.66 \AA\right.$; symmetry code: (i) $\frac{1}{2}-x, 2-y$, $\left.\frac{1}{2}+z\right]$ and edge-to-face $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions [H9 \cdots centroid $(\mathrm{C} 13-\mathrm{C} 18)=2.92 \AA$; symmetry code: (ii) $1-x, \frac{1}{2}+y$, $\left.\frac{3}{2}-z\right]$.

Experimental

The experimental procedure is comparable with that reported previously (Coumbarides et al., 2006). The actual quantities used for preparation of (I) were: n-butyllithium ($12.42 \mathrm{ml}, 2.5 M$ in hexanes, 31.0 mmol) and (R, S)-oxazolidinone ($5.00 \mathrm{~g}, 28.2 \mathrm{mmol}$) in 60 ml tetrahydrofuran (THF), combined with a solution of (rac)-2phenoxypropanoyl chloride ($5.71 \mathrm{~g}, 31.0 \mathrm{mmol}$) in 10 ml THF. The crude residue was purified by flash column chromatography on silica gel, eluting with light petroleum (b.p. 313-333 K)/diethyl ether (1:1)

Received 27 June 2006
Accepted 12 August 2006
to give a separable diastereoisomeric mixture in the approximate ratio anti-syn:syn-syn 50:50. The syn-syn diastereomer was isolated as colourless crystals $\left\{4.13 \mathrm{~g}, 45 \%\right.$ yield, m.p. $403-404 \mathrm{~K}, R_{\mathrm{F}} 0.42$ [light petroleum b.p 313-333 K/diethyl ether, 1:1]\}. Spectroscopic analysis: $[\alpha]_{\mathrm{D}}^{22}=+69.8\left(\mathrm{CHCl}_{3}, 295 \mathrm{~K}\right.$, concentration 1.9 g per 100 ml$)$; IR $\left(\mathrm{CHCl}_{3}, \nu_{\text {max }}, \mathrm{cm}^{-1}\right): 1770(\mathrm{C}=\mathrm{O}), 1712(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right): \delta 7.44-7.21\left(7 \mathrm{H}, m, 7 \times \mathrm{CH} ; \mathrm{Ph}_{\mathrm{a}}\right.$ and $\left.\mathrm{Ph}_{\mathrm{b}}\right), 6.99-6.84(3 \mathrm{H}, t, J$ $=7.3 \mathrm{~Hz}, 3 \times \mathrm{CH} ; \mathrm{Ph}_{\mathrm{a}}$ and $/$ or $\left.\mathrm{Ph}_{\mathrm{b}}\right), 6.02(1 \mathrm{H}, q, J=6.6 \mathrm{~Hz}, \mathrm{PhCH})$, $5.75(1 \mathrm{H}, d, J=7.2 \mathrm{~Hz}, \mathrm{PhCHO}), 5.69(1 \mathrm{H}, m, \mathrm{CHN}), 1.68(3 \mathrm{H}, d, J=$ $\left.6.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHCO}\right), 0.90\left(3 \mathrm{H}, d, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHN}\right) ;{ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 172.2(\mathrm{NC}=\mathrm{O}), 157.3(i-\mathrm{CO} ; \mathrm{Ph}), 152.9$ $(\mathrm{OC}=\mathrm{O}), 132.9(i-\mathrm{C} ; \mathrm{Ph}), 129.7,129.1,128.9,125.7,121.6,115.0(6 \times$ $\mathrm{CH} ; \mathrm{Ph}_{\mathrm{a}}$ and Ph_{b}), $80.8(\mathrm{PhCHO}), 71.7(\mathrm{PhCH}), 55.2(\mathrm{CHN}), 18.6$ $\left(\mathrm{CH}_{3}\right), 14.5\left(\mathrm{CH}_{3}\right)$; found: MH^{+}326.1393; $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{4}$ requires 326.1392.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4}$
$M_{r}=325.35$
Orthorhombic, $P_{\circ} 2_{1} 2_{1} 2_{1}$
$a=16.915$ (12) \AA
$b=10.634$ (5) \AA
$c=9.226$ (6) \AA
$V=1659.5(18) \AA^{3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
3072 measured reflections
1681 independent reflections

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.302 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.40 \times 0.30 \times 0.30 \mathrm{~mm}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.089$
$S=1.01$
1681 reflections
220 parameters
H -atom parameters constrained

Figure 1
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted.

Figure 2
A view of (I) along the b-axis direction. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted.
(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to the EPSRC and Queen Mary, University of London for a studentship to YY, the Royal Society and the University of London Central Research Fund for their financial support to JE, and the EPSRC National Mass Spectrometry Service (Swansea) for accurate mass determination.

References

Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. \& Yohannes, Y. (2006). Acta Cryst. E62, o4032-o4034.

Enraf-Nonius (1994). CAD-4-PC Software. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

